Dr Penelope Hancock

Marie Curie International Outgoing Fellow

Member profile picture
Email: penelope.hancock@zoo.ox.ac.uk
Address: None available

It has recently been shown that infection with Wolbachia can prevent Aedes aegypti mosquitoes from transmitting dengue, as well as other diseases such as Zika.  In this project we aim to better understand how Wolbachia infections spread in wild mosquito populations, to help inform strategies for releasing Wolbachia to control disease.  Experimental research is performed using A. aegypti mosquitoes contained in semi-field cages, and age-structured mathematical modelling techniques are employed to investigate Wolbachia spread dynamics.  Please see our publicly available C++ computer code, GYP_SIM.cpp (see 10.6084/m9.figshare.3980472), which allows users to implement our new models and explore different parameterisations.  This research is conducted in collaboration with James Cook University, Australia, and is funded by the European Union Seventh Framework Programme.  More generally, my interests lie in using mathematics to study infectious disease dynamics, and interdisciplinary research to identify major biological and ecological aspects as well as primary public health concerns.

Selected publications:

Hancock, P.A., White, V.L., Ritchie, S.A., Hoffmann, A. and Godfray, H.C.J. (2016) Predicting Wolbachia invasion dynamics in Aedes aegypti populations using models of density-dependent demographic traits, BMC Biology 14:96. doi: 10.1186/s12915-016-0319-5.  Link: https://bmcbiol.biomedcentral.com/articles/10.1186/s12915-016-0319-5 .  See also the Commentary by Cheke, R.A. 2016 BMC Biology 14:99. Link: https://bmcbiol.biomedcentral.com/articles/10.1186/s12915-016-0328-4

Hancock, P. A., White, V. L., Callahan, A. G., Godfray, C. H. J., Hoffmann, A. A., Ritchie, S. A. (2016), Density-dependent population dynamics in Aedes aegypti slow the spread of wMel Wolbachia. Journal of Applied Ecology. doi:10.1111/1365-2664.12620. Online open access: http://onlinelibrary.wiley.com/doi/10.1111/1365-2664.12620/full .  See also our online blog: https://jappliedecologyblog.wordpress.com/2016/

Hancock P.A., Rehman, Y., Hall, I.M., Edeghere, O., Danon, L. et al. (2014), Strategies for controlling non-transmissible infection outbreaks using a large human movement data set, PLoS Comput Biol 10(9): e1003809. Link: http://www.ploscompbiol.org/article/info%3Adoi%2F10.1371%2Fjournal.pcbi.1003809

Hancock, P.A. & Godfray, H.C.J. (2012) Modelling the spread of Wolbachia in spatially heterogeneous environments, Journal of the Royal Society Interface (online open access) Link: http://rsif.royalsocietypublishing.org/content/early/2012/05/29/rsif.2012.0253.full

 Hancock, P.A., Sinkins, S.P. and Godfray, H.C.J. (2011) Strategies for introducing Wolbachia to reduce transmission of mosquito-borne diseases, PLoS Neglected Tropical Diseases 5(4): e1024.  Link: http://www.plosntds.org/article/info%3Adoi%2F10.1371%2Fjournal.pntd.0001024

Hancock, P.A., Sinkins, S.P. and Godfray, H.C.J. (2011) Population dynamic models of the spread of Wolbachia, American Naturalist, 77(3), 323-333.

 Hancock, P.A. (2009) Combining fungal biopesticides and insecticide-treated bednets to enhance malaria control, PLoS Computational Biology, e1000525. Link: http://www.ploscompbiol.org/article/info%3Adoi%2F10.1371%2Fjournal.pcbi.1000525

 Hancock P.A., Thomas, M.B.T and Godfray, H.C.J (2009) An age-structured model to evaluate the potential of novel malaria control interventions: a case study of fungal biopesticide sprays. Proceedings of the Royal Society of London: Biological Sciences, 276, 71-80.